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SUMMARY

The application of unsteady computational fluid dynamics (CFD) codes to aeroelastic calculations leads
to a large number of degrees of freedom making them computationally expensive. Reduced-order models
(ROMs) have therefore been developed; an ROM is a system of equations which is able to reproduce
the solutions of the full set of equations with reasonable accuracy, but which is of lower order. ROMs
have been the focus of research in various engineering situations, but it is only relatively recently that
such techniques have begun to be introduced into CFD. In order for the reduced systems to be generally
applicable to aeroelastic calculations, it is necessary to have continuous time models that can be put
into discrete form for different time steps. While some engineering reduction schemes can produce time-
continuous models directly, the majority of methods reported in CFD initially produce discrete time or
discrete frequency models. Such models are restricted in their applicability and in order to overcome this
situation, a continuous time ROM must be extracted from the discrete time system. This process can most
simply be achieved by inverting the transformation from continuous to discrete time that was initially
used to discretize the CFD scheme. However an alternative method reported in literature is based on
continuous time sampling, even when this is not used for the initial discretization of the CFD code. This
paper focuses on one particular method for ROM generation, eigensystem realization algorithm (ERA),
that has been used in the CFD field. This is implemented to produce a discrete time ROM from a standard
CFD code, that can be used to investigate methods for obtaining continuous ROMs and the limitations of
the resulting models. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many engineering and scientific problems involve the solution of a set of differential equations. In
situations where there are a large number of degrees of freedom, solving this set of equations is
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computationally expensive. One example of this is in the modelling of the stability and responses
of flexible fixed wing aircraft. Theoretical prediction of the unsteady flows requires models of both
the fluid motion and the structure. The focus in this paper is only on the modelling of the fluid
motion, however the methods described here are general and are also applicable to other dynamic
systems.

Accurate fluid models for prediction of unsteady flow features for aeroelastic calculations
require solution of the full unsteady non-linear Euler or Navier–Stokes equations (see for example
References [1–5]). However, such methods are too computationally expensive for use in industry.
This is due to the fact that many thousands of parameter variations must be investigated. Therefore,
historically there has been a reliance on simpler methods which are not able to predict all the features
encountered in the flight regime of modern aircraft. More recently research has been directed
towards the application of system reduction methods, developed in other fields of engineering to
fluid modelling. The objective of a reduced-order model (ROM) is to identify a lower cost model
from the full system of equations, while still retaining reasonable accuracy. For an extensive review
of fluid motion modelling from classical methods through to recent developments see Reference [6].

In this work, the flow under investigation is assumed to be statically non-linear, but dynamically
linear. The assumption of dynamic linearity is a common approach used in the development
of ROMs and is a good approximation in many situations e.g. flutter calculations. While many
reduction methods can be directly applied to the matrices of the large linear system of equations
(e.g. eigensystem realization algorithm (ERA) (modified Ho algorithm) [7, 8], POD [9], Krylov-
subspace [10], Arnoldi [11, 12]), in fluid dynamics it has been more common to create ROMs in the
discrete frequency or discrete time domain using methods that do not require explicit construction
of the system matrices. This is because in general for most CFD codes neither the continuous nor
the discrete system matrices are ever explicitly constructed. Instead the CFD code solves either a
discrete frequency or discrete time approximation to the continuous time set of equations (obtained
after spatial discretization); the ROM initially produced is therefore itself a discrete frequency or
discrete time model.

Reduced systems have then been found by a number of techniques when the flow is
assumed harmonic with a discrete frequency, most prominently via eigenmode summation and
proper orthogonal decomposition [13]. Eigenmode summation has been used to reduce the
Euler [14] equations. However, the application of proper orthogonal decomposition is increas-
ingly investigated with models constructed for the Euler equations by Hall et al. [15, 16]. Further
improvements via balanced proper orthogonal decomposition [17] have also been obtained.

An alternative approach, identifies the discrete time pulse responses of the CFD code, which
characterize all solutions of the dynamically linear system [18–20]. These responses are then used
with the ERA [7] to obtain an ROM. ERA is an SVD-based method [21, 22] and has links to POD,
see Reference [23] where both ERA and POD are applied to the same problem. The ERA method
can be applied with minimal work to existing CFD codes and is the approach taken in this study
to obtain discrete time models.

The above discrete models are restricted to a fixed frequency or fixed time step, which means that
the discrete ROM cannot be accurately coupled to structural models with discrete non-linearities
(such as freeplay in a control surface). A time continuous ROM does not have this restriction [24].
This focus of this paper is then to examine and compare methods for deriving a continuous time
ROM of the fluid from a discrete time ROM.

The CFD code used as the basis for this work is an unsteady dual-time finite-volume scheme
which solves the non-linear Euler equations on a moving mesh [5]. The mean or base solution is
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found by running the code in steady flow mode (i.e. flow is statically non-linear). The dynamically
linear pulse responses can be found by time-linearizing the code [25, 26] and performing a series
of calculations for pulse inputs [27]. An alternative method which approximates the linear pulse
response as the linear portion of the non-linear response of the full non-linear code has been used
by Silva [19]. In this latter case, twice as many pulse response calculations must be performed.
Here, the first approach has been adopted.

2. CONTINUOUS LINEAR EULER EQUATIONS

The dynamically linear responses, about the non-linear mean solution, are calculated using the
2D linearized Euler equations (also sometimes called the small disturbance Euler equations) on
moving meshes [26]. This description of the ROM generation method, starts from a spatially
discrete, but time continuous version of the linearized Euler equations. (Note that the CFD code
ultimately used is fully discrete in both time and space.) For simplicity, throughout the rest of
this paper references to continuous or discrete models/systems indicate only the time-dependent
nature of the system.

These equations can be applied to any motion where the perturbations are small. As an example,
if these equations are applied to calculations of the flow about 2D aerofoils with trailing edge flaps,
that can undergo linearized pitch motions [26], then the non-dimensional system can be rewritten
in continuous state-space form, more useful for this study as

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(1)

A, B, C and D are the system matrices. The input vector u and the state-vector x are given by

u = [�, �, �̇, �̇]T
x = [�̂2,2, û2,2, v̂2,2, p̂2,2 . . . �̂imax, jmax

, ûimax, jmax, v̂imax, jmax, p̂imax, jmax]T
(2)

� is the pitch angle, � is the flap angle, �̂, û, v̂ and p̂ are the changes from the mean values of
the density, speeds and pressure. Note that the scheme considered here is a cell-centred one, with
centres inside the computational domain labelled i = 2, imax, j = 2, jmax.

The vector y is the output and is defined to produce the required information about the linear
system. An example of a suitable y for the motion defined above is

y=[Ĉl , Ĉm, Ĉh]T (3)

where Ĉl , Ĉm and Ĉh are the perturbations in the lift, pitching moment and hinge moment
coefficients from the mean values.

The differential equation (1) is solved by multiplying through by e−At , regrouping terms and
then integrating from 0 to t

x(t) = U(t)x(0) +
∫ t

0
U(t − �)Bu(�) d�

y(t) = CU(t)x(0) +
∫ t

0
CU(t − �)Bu(�) d� + Du(t)

(4)
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where U(t) = eAt . The first term on the right-hand side is the free response (i.e. the response when
u= 0) and the remaining terms are called the forced response (i.e. the response when x(0)= 0
and u(t) �= 0). In the linearized Euler equations x(0)= 0 so, provided the entries of Du(t) are
continuous for t>0, the total response can be written as

x(t) =
∫ t

0
U(t − �)Bu(�) d�

y(t) =
∫ t

0
(CU(t − �)B + D�(t − �))u(�) d�

(5)

An alternative expression for the output y(t) is

y(t) =
∫ t

0
H(t − �)u(�) d� (6)

The continuous-time impulse response matrix H(t) has, as its i th column, the output response of
the system for a unit impulse input �(t) on the i th component of u with all other inputs set to zero.
If this function, H(t), and its derivatives could be identified, then it would be possible to construct
a generalized Hankel matrix of the system [28] and identify directly an ROM of the continuous
system using ERA. However, in the case of the linearized Euler equations, the information required
to construct this matrix is not directly available.

3. A DISCRETE TIME CFD MODEL OF THE CONTINUOUS SYSTEM

A continuous ROM of the continuous linearized Euler equations is therefore found indirectly. The
continuous equations are put into a discrete form that allows the terms required to construct a
discrete Hankel matrix of the system to be easily identified. A one-step implicit finite difference
scheme is used for the time derivative as this permits direct identification of the Markov parameters
which form the required terms of the Hankel matrix. The one-step scheme, in this case, acts a
simple filter of the eigenvalues of the continuous system to allow dominant low-frequency terms to
be identified and retained in the reduced-order system. The continuous ROM ultimately obtained
can be put into discrete form using any appropriate finite difference approximation scheme. Note
also that an approximate linear response can be extracted from two calculations using a non-linear
CFD code, so the current method can be applied directly to existing schemes [19, 29]. The discrete
form of Equation (1) is

x̃k − x̃k−1

�t
= Ax̃k + Bũk

ỹk = Cx̃k + Dũk

(7)

where x̃, ũ and ỹ are discrete approximations to the state, input and output vectors respectively.
On rearranging this becomes

x̃k = Ãx̃k−1 + B̃ũk

ỹk = C̃x̃k + D̃ũk
(8)
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where the discrete system matrices are given by

Ã = (I − A�t)−1

B̃ = (I − A�t)−1B�t

C̃ = C

D̃ = D

(9)

To simplify the process of obtaining an ROM of the system, the system output is modified. Since
D and thus D̃ are known matrices, both the continuous system and the discrete approximation use
a modified output, by subtracting the term Du(t) from the continuous output and the term D̃ũ
from the discrete output equation. The modified discrete system is then

x̃k = Ãx̃k−1 + B̃ũk

ỹmk = ỹk − D̃ũk = C̃x̃k
(10)

This can be solved using one-sided z-transforms [30, 31] to give the output equation

ỹm(k) =
k∑

n=0
H̃(k − n)ũn (11)

The matrix H̃(k) is composed of columns which are the outputs for a unit sample pulse on each
input separately, i.e. the i th column is the output vector at time k for a unit sample input in the
i th component of ũ with all other entries of ũ set to zero, see Reference [28].

Then if x̃−1 = 0, it follows from (10) that

ỹm0 = C̃B̃ũ0

ỹm1 = C̃ÃB̃ũ0 + C̃B̃ũ1

ỹm2 = C̃Ã2B̃ũ0 + C̃ÃB̃ũ1 + C̃B̃ũ2

ỹm3 = C̃Ã3B̃ũ0 + C̃Ã2B̃ũ1 + C̃ÃB̃ũ2 + C̃B̃ũ3

(12)

thus

ỹml =[C̃Ãl B̃, C̃Ãl−1B̃, . . . , C̃Ã2B̃, C̃ÃB̃, C̃B̃]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ũ0

ũ1

...

ũl−2

ũl−1

ũl

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

The following sequence Hk, k = 0,∞
{H0,H1,H2, . . . ,Hk, . . .} = {C̃B̃, C̃ÃB̃, . . . , C̃ÃkB̃, . . .} (14)
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is called the Markov sequence, the weighting sequence or the impulse-response sequence of the
discrete system. The forced response of the discrete system is uniquely determined by its Markov
sequence and the input. Thus any two systems with identical Markov sequences have identical
forced responses for the same input. Note that for a system of rank n the sequence Hk, k = 0, 2n
defines the forced response exactly.

The system realization method described by Juang and Pappa [7] relies on being able to construct
the generalized Hankel matrix whose entries are terms of the form

C̃ÃkB̃ (15)

for k � 0. These are available from the impulse-responses of the system, which define the Markov
parameters (see Equations (11) and (13)).

The Hankel matrix in this case is the r × s block matrix given by

Hrs(k) =

⎡
⎢⎢⎢⎢⎢⎣

Hk Hk+1 Hk+2 . . . Hk+s−1

Hk+1 Hk+2 Hk+3 . . . Hk+s

...
...

...
...

Hk+r−1 Hk+r Hk+r+1 . . . Hk+s+r−2

⎤
⎥⎥⎥⎥⎥⎦ (16)

This matrix can be used to realize and reduce the system matrices [7] via a number of different
algorithms. The technique used in this study is described in the next section.

4. REALIZATION AND REDUCTION OF THE DISCRETE TIME SYSTEM

The eigenvalue realization algorithm [7] provides a method for the system matrices (continuous
or discrete) to be realized or identified, provided the Hankel matrices can be constructed. This
requires the Markov parameters of the system.

Focussing on the discrete system, the Markov parameters are matrices with columns equal to the
value of the output vector ỹ′ for unit sample impulses on each component of ũ in turn. Note that the
triple [Ã, B̃, C̃] is not unique and that for any non-singular matrix T, the triple [TÃT−1,TB̃, C̃T−1]
is also a realization. Only a brief outline of the theory is presented here. Given that the Hankel
matrices are available the next step is to carry out a singular value decomposition (SVD) of Hrs(0).
It is necessary to identify the size of this matrix. If there are p outputs and m inputs to the system,
then each of the Markov parameters is of size p×m. Thus the size of the Hankel matrix is
rp× sm. Then the SVD is given by

Hrs(0) =UWVT (17)

where W is an sm × sm diagonal matrix whose diagonal entries are called singular values which
are either positive or zero, U is rp× sm and V is a sm × sm matrix. The SVD scheme is such
that the elements of W are in size order i.e. [w(1, 1)>w(2, 2)>w(3, 3) · · ·]. The rank of the ROM
of the system is then determined by the number of elements of W which are larger than some
desired accuracy or by taking into account only the n largest singular values in W. Then matrix
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Hrs(0) can be approximated as

Hrs(0)=PKQT (18)

where the matrices U,W,V have been reduced in size by deleting unnecessary columns and rows
as appropriate. The reduced matrix from U is P : rp× n, the reduced matrix from W is K : n × n
and the reduced matrix from V is Q : sm × n.

It is then possible to show [7] that a realization is

Ã = K−1/2PTHrs(1)QK−1/2

B̃ = K1/2QTEm

C̃ = ET
pPK

1/2

(19)

where ET
p =[Ip, 0p, 0p, . . . , 0p] has size p× rp and ET

m =[Im, 0m, 0m, . . . , 0m] has size m × sm.

5. CONTINUOUS ROMs

The above scheme is used to get a discrete-time ROM of the CFD code. However, in discrete form
the model is restricted to problems with a fixed time step. For problems such as aeroservoelastic
modelling and non-linear structural behaviour, this limits the application of the ROMs. A time
continuous ROM does not have this restriction. In this section, two methods are investigated in
detail; a simple inversion of the transformation used to put the CFD code into discrete form [27]
and a method based on sampling [23]. A third study be Lucia et al. [32] produces continuous
ROMs from discrete ROMs. However, the equations as written in the paper suggest that the discrete
ROM matrices A,B,C are identical to the continuous ROM matrices. This is not correct and as
expected led to unstable solutions when implemented.

5.1. Inversion of the transformation

The first method considered is to invert the transformation used to get from the continuous to the
discrete system (9) before system reduction. This is applied to the reduced system matrices

A = (I − Ã−1)/�t

B = (Ã−1B̃)/�t

C = C̃

D = D̃

(20)

This is a valid realization of the continuous system. However, the terms which have been omitted
from the reduced size discrete system Hankel matrix may not be exactly the same terms which
would have been omitted from the equivalent continuous Hankel matrix. In other words, there may
be some differences between a rank n continuous system (n<rank(A)) obtained from the discrete
system Hankel matrix and a rank n continuous system obtained directly from the continuous system
Hankel matrix. However, it is shown for the test cases in this study that the dominant terms are
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correctly predicted. The continuous-system ROM could be used with different time steps and even
different finite difference schemes.

5.2. Continuous-time system with sampled inputs

A way of obtaining a continuous system based on methods developed in the field of control and
signal processing has been used by Tang et al. [23]. Essentially, it is an inversion of the process
by which a continuous system could be put into discrete form using sampled inputs. Like the
current study, Tang et al. did not use a sampled input method to put his system into discrete
form; the sampled approach is used solely to obtain a reduced-order continuous model from a
reduced-order discrete model. To explain why it might produce an adequate continuous ROM in
these circumstances, consider how a system is put into discrete time using an implicit sampled
input approach.

A discrete set of equations of the form

x̃k = Ãx̃k−1 + B̃ũk

ỹk = C̃x̃k + D̃ũk
(21)

is required which approximates the continuous system in the sense that the discrete output ỹ(k)
equals the continuous output y(k�t) exactly at each sample time k�t for inputs that approximate
the actual input. Suppose the input values of the continuous system (1) are sampled at each sample
time k�t , these values are then used to replace the continuous-system input by a stepped input

u∗(t) =u(k�t) (22)

for (k − 1)�t<t<k�t . Then using Equation (4)

x(k�t) =
∫ k�t

0
U(k�t − �)Bu∗(�) d�

= U(�t)x((k − 1)�t) +
∫ k�t

(k−1)�t
U(k�t − �)Bu∗(�) d�

= U(�t)x((k − 1)�t) +
(∫ k�t

(k−1)�t
U(t − �) d�

)
Bu(k�t)

= U(�t)x((k − 1)�t) +
(∫ �t

0
U(�) d�

)
Bu(k�t)) (23)

The output equation is

y(k�t) =Cx(k�t) + Du(k�t) (24)
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Comparing to Equation (21), appropriate matrices for a discrete system are

Ã = eA�t

B̃ =
(∫ �t

0
eA� d�

)
B=A−1(eA�t − I)B

C̃ = C

D̃ = D

(25)

The set of equations (21) has the same form as Equation (8) and can be modified as in
Equation (10). The solution is then given by

ỹmk =
k∑

n=0
H̃(k − n)ũn (26)

where for a unit sample input on the i th component of ũ the output response is H̃ i the i th column
of matrix H̃.

For the discrete finite difference scheme used in the CFD code, information is only available
about the solution at discrete intervals in time. If at these points in time it is assumed that the
discrete system output matches the output of the continuous time scheme (i.e. the error is small
and can be neglected), then the finite difference scheme is essentially the same as the scheme
described in this section. Therefore the inverse of the transformation used here can be used on the
matrices of the ROM obtained from the finite difference scheme.

Since the triple [Ã, B̃, C̃] is not unique (see Section 4), the triple where the matrix Ã is diagonal
is taken to simplify the inversion process. Diagonalization of Ã is easily achievable for the problems
discussed in this paper and the continuous-system matrices are then given by

A = ln(Ã)/�t

B = (Ã − I)−1AB̃

C = C̃

D = D̃

(27)

6. TEST CASE INPUT CHANNELS

The methods described in Sections 5.1 and 5.2 will be applied to the identification of a continuous
ROM for the flow about an aerofoil with trailing edge flaps that can undergo linearized pitch
motions. For this motion, the position of a point on the aerofoil surface at any time is

x(t) = x + �x(t)

y(t) = y + �y(t)
(28)
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Table I. Channel inputs to linearized Euler equations for linearized pitch and flap motions.

Channel 1 � Channel 2 � Channel 3 �̇ Channel 4 �̇ All channels �, �, �̇, �̇
(t = k�t) (t = k�t) (t = k�t) (t = k�t) (t �= k�t)

�x (y − bc)c1 (y − hy)c2 0 0 0
�y −(x − ac)c1 −(x − hx )c2 0 0 0
xt 0 0 (y − bc)c3 (y − hy)c4 0
yt 0 0 −(x − ac)c3 −(x − hx )c4 0

�x,�y are displacements and xt , yt are grid speeds of a point on the aerofoil.

where x, y are the mean steady position of the point on the aerofoil surface and �x,�y are the
displacements of the point at time t . The displacements are given by

�x = (y − bc)�amp(t) + S(hx )(y − hy)�(t)

�y = −(x − ac)�amp(t) − S(hx )(x − hx )�(t)
(29)

and the grid speed of the point on the aerofoil surface xt , yt are given by

ẋ = (y − bc)�̇amp(t) + S(hx )(y − hy) ˙�(t)

ẏ = −(x − ac)�̇amp(t) − S(hx )(x − hx ) ˙�(t)
(30)

where (hx , hy) is the hinge location and

S(hx ) = 0 x < hx

S(hx ) = 1 x � hx

There are four associated input channels for this flow. the pulse inputs are given in Table I. The
scaling constants c1, . . . , c4 are used to reduce the number of subiterations needed to achieve a
given error level and to avoid the sum of the mean value and the perturbation in wall pressure
becoming negative.

7. RESULTS

The test cases shown here are for a NACA0012. The grid used for the calculations is of size
191× 36, this means that the number of unknowns is 26 600. A steady calculation is performed
for the aerofoil at incidence � = 0◦. The steady flow pressure distributions at freestream Mach
numbers M = 0.7 and 0.80 are shown in Figure 1. These Mach numbers have been selected to
illustrate flows without and with shockwaves.

It should be noted that the main costs associated with the present approach are the unsteady
CFD calculations needed to find the pulse responses of the code. The additional costs for ERA and
inversion are negligible in comparison. The number of pulse response calculations depends on the
number of system inputs, so the costs of the method increase as the number of inputs increases
and is related to the efficiency of the CFD code used.
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Figure 1. Steady pressure distributions M = 0.7, 0.8.

Table II. Channel inputs to the linearized Euler equations for linearized pitch
and linearized flap motions.

M �t1 c1 c2 c3 c4

0.7 0.2608 �/180 �/180 0.335�/180 0.335�/180
0.8 0.2282 �/180 �/180 0.382�/180 0.382�/180

7.1. Procedure for ROM generation

The procedure to generate continuous ROMs starts with the calculation of the sample responses of
the CFD scheme for each input. The non-dimensional time step used is �t1 = (�tdim1 /c)

√
p∞/�∞

where the time step �tdim1 , freestream speed of sound c, freestream pressure p∞ and freestream
density �∞ are all dimensional quantities. The values of the time step and input scaling constants
for the two Mach numbers under consideration are shown in Table II. As an example, the sample
responses for each of the four input channels are shown for M = 0.7 in Figure 2.

The ERA algorithm was then used to produce a discrete ROM from the sample responses at
each Mach number. Two continuous ROMs are then generated using the methods described in
Sections 5.1 and 5.2.

The first continuous ROM, produced by inverting the implicit transformation, is put into discrete
form for calculations using the implicit scheme. ROM solutions produced are labelled imp in all
figures.

The second continuous ROM, produced using the inverse sampling approach, is put into discrete
form for calculations in two ways. ROM solutions produced by putting the equations into discrete
form using the implicit scheme are labelled sp-imp and ROM solutions produced by putting the
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Figure 2. Example pulse responses M = 0.7: (a) �; (b) �; (c) �̇; and (d) �̇.

equations into discrete form using the inverse sampling scheme are labelled sp-sp. For the M = 0.7
case, the ROM used in this investigation has rank 17 and for M = 0.8 the ROM has rank 21.

7.2. Sinusoidal linear pitch oscillations

The pitch motion is defined in dimensional variables by

�amp(t) = �max sin(�t) (31)
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Figure 3. Lift perturbation for pitch oscillations at three frequencies, M = 0.7.
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Figure 4. Moment perturbation for pitch oscillations at three frequencies, M = 0.7.
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Figure 5. Hinge moment perturbation for pitch oscillations at three frequencies, M = 0.7.
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Figure 6. Lift perturbation for pitch oscillations at three frequencies, M = 0.8.
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Figure 7. Moment perturbation for pitch oscillations at three frequencies, M = 0.8.
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Figure 8. Hinge moment perturbation for pitch oscillations at three frequencies, M = 0.8.
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Figure 9. Lift perturbation for flap oscillations at two frequencies, M = 0.7.
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Figure 10. Moment perturbation for flap oscillations at two frequencies, M = 0.7.
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Figure 11. Hinge moment perturbation for flap oscillations at two frequencies, M = 0.7.
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Figure 12. Lift perturbation for flap oscillations at two frequencies, M = 0.8.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:1247–1275
DOI: 10.1002/fld



REDUCED-ORDER STATE-SPACE CFD MODELS 1267

time

P
er

tu
rb

at
io

n
 in

 C
m

P
er

tu
rb

at
io

n
 in

 C
m

0 10 20 30 40
-0.02

-0.01

0

0.01

0.02

imp
sp_imp
sp_sp
linear

imp
sp_imp
sp_sp
linear

k=0.202

time
0 2 4 6 8

-0.01

-0.005

0

0.005

0.01

0.015 k=1.01

Figure 13. Moment perturbation for flap oscillations at two frequencies, M = 0.8.

where � is related to the non-dimensional reduced frequency, kred via

kred = �c

2U∞
(32)

Calculations were performed with �max = 1o at M = 0.7, 0.8 for three reduced frequencies
kred =0.0404, 0.202, 1.01. Each calculation was performed with 72 steps per period. At the three
frequencies, the non-dimensional time steps are 5�t1, �t1, �t1/5, respectively, where the continu-
ous ROM was created using a pulse width of �t1. Solutions for M = 0.7 are shown in Figures 3–5.
The full linear solution, labelled linear is compared with the three ROM solutions. The figures
show that lift, pitch moment and hinge moment for all solutions are in good agreement at the
medium and low frequencies. At the higher frequency the lift solutions are in good agreement, but
the two inverse sampling-based ROM solutions exhibit small errors in amplitude compared to the
full linear solution in pitching moment and hinge moment. The implicit ROM solution is still in
good agreement with the full solution.

Solutions for M = 0.8, where the mean flow has a shock, are shown in Figures 6–8. The lowest
frequency solutions show good agreement between all the methods for both lift, pitching moment
and hinge moment. At the medium frequency the lift and hinge moment values are in agreement,
but all three ROMs show a small error in pitching moment. The ROM solutions labelled imp and
sp-sp overlay as expected since the medium frequency solutions are calculated using the same
time step as used to obtain the pulse responses. This means both calculations should have the same
discrete system form. At the higher frequency the inverse sampling-based ROM solutions have
errors in lift, pitching moment and hinge moment. The implicit-based ROM has good agreement
in lift and small errors in pitching and hinge moments.
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Figure 14. Hinge moment perturbation for flap oscillations at two frequencies, M = 0.8.

7.3. Sinusoidal linear flap oscillations

The flap motion is defined in dimensional variables by

�amp(t) = �max sin(�t) (33)

Calculations are performed for the same frequencies and Mach numbers as for linear pitch, with
a maximum flap angle �max = 1o. Solutions for the lowest frequency are not shown as all ROM
solutions are in excellent agreement with the full solution in lift, pitching moment and hinge
moment.

Solutions for M = 0.7 are shown in Figures 9–11. At the medium frequency, all solutions are
in excellent agreement with the full solution. However, at the higher frequency the implicit ROM
solution has good agreement, but the two inverse sampling-based ROM solutions show a small
error in the solution in lift, pitching moment and hinge moment.

Solutions for M = 0.8 are shown in Figures 12–14. Again good agreement is seen at the medium
frequency, with small errors in the inverse sampling-based results at the higher frequency.

7.4. Further investigations

The trends from the test cases considered above is that as the frequency is increased, small errors
start to be observed between the full linear solution and the ROM solutions, particularly those
produced from a continuous ROM obtained using the sampling inversion technique. A further
investigation was thus carried out for one case, that of a pitching aerofoil at M = 0.7. Additional
solutions were calculated with kred = 2.02, 4.04, 8.08, 10.1 and 20.2. The number of steps per cycle
was kept at 72 as for all the testcases in previous sections. Thus the corresponding time steps are
�t1/10,�t1/20,�t1/40,�t1/50 and �t1/100. Figure 15 shows the moment perturbation as it was
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Figure 15. Higher frequency moment perturbations at M = 0.7.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:1247–1275
DOI: 10.1002/fld



1270 A. L. GAITONDE AND D. P. JONES

xx
x x

x

x

x

x

++
+

+

+

+
+

+

L
o

n
g

 t
er

m
 p

ea
k 

am
p

lit
u

d
e

0.1

0.2

0.3

linear
imp
sp-imp
sp-sp

x

+

+
+

+

+

+

+ +

+

Reduced Frequency

D
if

fe
re

n
ce

 in
 p

ea
k 

am
p

lit
u

d
e 

p
h

as
e 

an
g

le
 f

ro
m

 f
u

ll 
lin

ea
r

5 10 15 20

Reduced Frequency
5 10 15 20

0

20

40

60

80

100

imp
sp-imp
sp-sp

+

Figure 16. Long-term moment peak amplitude and its location.

most sensitive to frequency. Also shown in Figure 16 is the long-term peak amplitude and the
difference in the phase angle at which this peak is located compared with the full linear solution. It
can be seen that significant errors develop in the sampling-based ROM solutions compared to the
full linear solution from kred = 4.04 onwards. The implicit ROM solution performs better. The initial
transient is less well predicted for reduced frequencies above kred = 4.04, but good predictions of
the long-term sinusoidal behaviour are maintained right up to kred = 10.1. At this frequency, the
period of motion is less than 2�t1. Note it is inevitable that the implicit scheme eventually begins
to become unable to capture the initial transient and eventually the long-term sinusoidal behaviour
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as the frequency increases. This is because for these cases, very high frequency terms are important
and these are not the dominant terms of the full linear system for the time step used to create the
ROM. These terms are therefore not identified by the ERA scheme.

To investigate the differences in behaviour of the two methods, the effect of the mappings on
the reduced system eigenvalues is considered. The reduced-order continuous scheme is stable if
its eigenvalues have positive real part and so the corresponding discrete implicit scheme must
have eigenvalues lying within the circle shown in Figure 17. The discrete ROMs yielded by the
identification scheme have eigenvalues lying within the required circle.

An eigenvalue, � = �r + i�i , of the reduced-order continuous-system matrix A and the cor-
responding eigenvalue, �̃ = �̃r + i�̃i , of the reduced-order discrete system matrix Ã are related
via

� = �̃ − 1

�̃�t
(34)

for the simple implicit inversion scheme and

� = ln(�̃)

�t
(35)

for the sampling-based processing inversion scheme. Since both methods start from the same
discrete ROM, the differences are related to these mappings rather than to what has been identified
by the ERA algorithm.

The differences between these mappings when it is applied to an array of points lying within
the circle of Figure 17 are shown in Figures 18 and 19. These show the difference in magnitude
and phase angle for the continuous eigenvalues mapped using the implicit and sampling-based
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Figure 19. Difference in phase angle (in degrees) of the continuous eigenvalues for the two mappings.

schemes. The greatest differences are found for discrete eigenvalues with the smallest real parts.
The discrete eigenvalues nearest to the origin have a significant influence at higher frequencies, but
are less important at lower frequencies. Hence there are bigger differences between the implicit and
sampling-based ROM solutions at higher frequencies. From the results it seems that the implicit
ROM is more appropriate at higher frequencies.

7.5. Example aeroelastic application

The focus of this paper is on continuous ROMs of the fluid motion. The ultimate application
of these models is for aeroelastic calculations including those with structural non-linearities. To
demonstrate that the ROMs can indeed be used in place of full CFD solutions, an illustrative test case
is presented. The example system used is a three-degree-of-freedom system for a NACA64A010
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Figure 20. A three-degree-of-freedom aeroelastic system.

Figure 21. Example aeroelastic solution.

aerofoil; with vertical heave translation, rotational pitch and control surface pitch motion, see
Figure 20. The usual linear structural model, obtained if there is no structural damping, is modified
so that the stiffness constants are functions of displacement and velocity. The example result, shown
here, is for a freeplay of amplitude 0.1◦ in the flap stiffness which is a function of displacement.
Figure 21 shows a phase plane plot (� vs �̇) for a limit cycle; the free stream Mach number is
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M∞ = 0.845 and the flutter speed index is U∗ = 0.176. The full CFD solutions were obtained
from a time-accurate version of Jameson’s standard cell-centred finite volume scheme adapted for
moving meshes. Good agreement is found between ROM and full CFD solutions. Further results
for this and other test cases can be found in Reference [33].

8. CONCLUSIONS

Two different methods for deriving a continuous ROM from a discrete ROM, obtained from the
pulse responses of a linear CFD code, have been investigated. The results shown indicate that
both the continuous ROMs are able to reproduce the full linear solution for sinusoidal motions
at the lower frequencies, where a time step close to that used to calculate the pulse responses
is appropriate. As the frequency is increased and the time step is decreased, the sampling-based
inversion method showed errors at a much lower frequency than the implicit inversion technique.
This is due to the fact that the eigenvalues of the continuous ROM corresponding to the higher
frequency terms are less accurately mapped by the sampling-based inversion transformation.

Thus using a sampling-based approach even when it has not been used to put a system into
discrete form can be an appropriate way to generate a continuous ROM. It should be noted,
however, that its range of applicability will be limited.
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